You are using an outdated browser. Please upgrade your browser to improve your experience and security.

Preventing the loss of biodiversity

A thorough knowledge of the factors that cause extinction and the vulnerability of different species to them is an essential part of conserving species. In large part, conservation is about removing or reducing those factors and doing so for the most vulnerable species and in the places where species are most vulnerable. Much of the task of conservation professionals is to protect habitats large enough to house viable populations of species, first deciding where the priorities should be and sometimes restoring habitats that already have been destroyed. Local conservation groups often spend time removing introduced species, which can mean physically weeding invasive plants or trapping invasive animals. These activities must be accompanied by efforts to prevent introductions of new threats. Others work to reduce harvesting directly or to reduce the incidental catch of nontarget species. Nonetheless, there are a variety of specific tools that can be applied to different circumstances, as categorized below and illustrated by case histories. Sometimes, when working with very rare species, scientists may not know the exact causes of threat, which can lead to intense arguments about exactly how to proceed.

Species interventions

Protective custody

Some species become so rare that there are doubts about whether they will be able to survive in the wild. Under such circumstances, the species may be brought into protective custody until areas can be made suitable for their release back into the wild.

Protective custody is an important tool in plant conservation, where a large number of seeds can be easily stored. In addition, botanic gardens can grow rare plants, protecting the species until such times as they can be planted in the wild. Of a total of about 300,000 described species of flowering plants, Botanic Gardens Conservation International has estimated that about 80,000 species are protected in botanic gardens and a few thousand additional species in other facilities—together about one-third of the total. Kew Garden’s Millennium Seed Bank—with the mission to conserve 25 percent of the world’s bankable plant species by 2020—became the largest wild plant seed bank in the world. By 2018 it contained about 13 percent of the world’s wild plant species, holding some 2.25 billion seeds from 189 countries.

For animals, zoos provide an important refuge for some vertebrate species but not for the vast majority of animals, which are invertebrates. Of species protected in zoos, a number of them have later been returned to the wild. To do so, however, substantial problems need to be overcome.

Determining that a species should be brought into captivity and then deciding what to do with the individuals are illustrated by the California condor. The first key decision was whether to bring the birds into protective custody or to manage their small population in the wild. There was no dispute that the condors were once widespread, ranging across the southern and western United States and northern Mexico. As long ago as the turn of the 20th century, however, they were restricted to the mountains of southern California. The widespread practice of setting out poisoned carcasses to kill livestock predators was likely the major cause of their decline. Exactly how many condors still survived was at the core of the debate. Some thought their numbers had been declining constantly, from 150 in the 1950s to 60 in 1970. Others posited constant numbers, and, according to one opinion, if there was no decline, there was need for neither explanation nor intervention—the condors, though rare, should be left alone.

Eventually, photographic surveys completed the catalog of individuals, removing doubts about which individuals were alive, which were dead, and why. Studies of nesting showed that those birds that bred did so with reasonable success. Radio-collared birds showed that the species foraged far beyond the remote areas of its nesting sites, so simply leaving the birds alone and protecting the habitat near the nest would not be sufficient. Birds died from ingesting lead in animals that had been shot or the toxic substances in poison-laced carrion. In the 1980s all the remaining birds were brought into captivity, although not without a lawsuit over the issue.

Because captive populations are almost always small, there is a high risk of inbreeding. Thus, the condors were carefully screened genetically to ensure that as much as possible of the genetic variability of the species was preserved (see below). The captive-breeding program was ultimately a success, and between 12 and 20 fledglings were produced each year after 1991. Earlier production had been lower, likely as a consequence of the birds’ inexperience in nesting and rearing. Efforts to teach captive-reared birds through artificial means—some nestlings were fed by puppets resembling condor heads—were much less successful. These birds were particularly inept when released, as real parents teach their young many important things about living in the wild. Eventually, scientists released birds in Arizona, California, and Baja California, and some of these birds have reared young of their own in the wild.

Genetic intervention

In small populations, inbreeding can cause genetic variability to be lost quite quickly. A simple example is provided by the Y chromosome in humans (and other mammals), which confers maleness and which behaves like human surnames do in large parts of the world. If every human couple had just two children each generation, then by chance alone 25 percent of the couples would have two sons, each with one Y chromosome from the father; 25 percent would have two daughters, each with no Y chromosome; and the remaining 50 percent would have one son and one daughter. The surnames of the fathers with two daughters would be lost as they married and had their own children, as indeed would be those fathers’ Y chromosomes. In a small breeding population, after just a few generations, every individual would have the last name of the same male ancestor—perhaps a great-great-grandfather—and the same Y chromosome.

Many genetic mutations are deleterious, reducing the individual’s chances of survival, but are also recessive (see recessiveness), requiring the inheritance of one mutant gene from each parent to manifest their effect. This means that in a large population, their effect will be masked by the overwhelming numerical superiority of the normal dominant gene (allele; see dominance). For the reasons explained above, in a small population chance events cause the loss of genetic variability and so increase the likelihood that individuals will suffer harmful genetic diseases.

Studies on mammals kept in zoos illustrates the harmful effects of inbreeding. In the past, to maintain sufficient productivity, zookeepers often bred animals that proved to be good at producing young. Because of this practice, some breeding pairs quickly came to have the same grandparents and, in some cases, the same parents. The studies showed that such pairs produced young that were much less likely to survive than young from pairs of unrelated individuals. Many modern zoos serve as “gene banks” and store genetic reserves of their animals. Zoos in various locations around the world can exchange the semen of endangered species for artificial insemination to promote genetic diversity. Minimizing inbreeding is especially critical for the preservation of animals that are extinct in the wild or critically endangered.

The practical problem for conservation is whether to place efforts on genetic intervention—bringing in “new blood,” that is, individuals and so genes, from the outside—or to concentrate on the factors causing the initial decline.

This issue was at the heart of the management dilemma posed by the Florida panther (Puma concolor coryi), a distinct subspecies of puma (P. concolor) confined to a small, isolated, and inbred population in southern Florida. The specific question was whether to introduce pumas from Texas into the Florida population. Florida panthers once had been part of a continuous widespread population. In the 19th century they became isolated in southern Florida. As their numbers declined, the occurrence of genetic defects increased, including sperm and heart defects and undescended testicles in males. Conservation scientists hoped that the introduction of pumas from outside Florida would reverse the genetic damage. This proposal was highly controversial; as with the example of the California condor, some argued that the population was doing well in its limited range and did not need additional animals. Despite concerns, in the mid-1990s eight females from Texas were released, and scientists closely followed the fates of them, of their young, and of the young of cats with only Florida parents. It was found that, although hybrid cats—those with both Florida and Texas parents—do not seem to live longer than pure Florida cats and hybrid females do not produce more kittens than pure Florida females, hybrid kittens survive about twice as well. Since the introduction of the Texas females, numbers of Florida panthers have increased, and hybrid cats were expanding the known range of their habitats.

Associated difficulties and costs

Previous discussions have covered the release of individuals into the wild to reestablish populations that have gone extinct or to rescue inbred populations. They also have noted that protecting species from human harvesting and removing invasive species are major techniques in saving biodiversity. These and other species-by-species interventions are often high-profile actions that attract considerable media attention. This does not mean that they are easy or cheap, as the following examples demonstrate.

Your preference has been recorded
July 4th Savings! Get 50% off!
Learn More